A dual role for COOH-terminal lysine residues in pre-Golgi retention and endocytosis of ERGIC-53.

نویسندگان

  • F Kappeler
  • C Itin
  • R Schindler
  • H P Hauri
چکیده

ERGIC-53 (former designation, p53) is a 53-kDa nonglycosylated, dimeric, and hexameric type I membrane protein that has been established as a marker protein for a tubulovesicular intermediate compartment in which protein transport from the endoplasmic reticulum to the Golgi apparatus is blocked at 15 degrees C. Although ERGIC-53 is not a resident protein of the rough endoplasmic reticulum its cDNA sequence carries a double lysine endoplasmic reticulum retention motif at the cytoplasmically exposed COOH terminus. Here we report that overexpression of ERGIC-53 in COS cells saturates its intracellular retention system leading to the appearance of ERGIC-53 at the cell surface. Cell surface ERGIC-53 is efficiently endocytosed by a mechanism that is disturbed when the two critical lysines of the endoplasmic reticulum retention motif are replaced by serines. The results suggest a mechanistic similarity of pre-Golgi retention by the double lysine motif and lysine-based endocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway

ERGIC-53 is a lectin-type membrane protein that continuously recycles between the ER, ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi. To identify the targeting signals that mediate this recycling, N-glycosylated and myc-tagged variants of ERGIC-53 were constructed. By monitoring endoglycosidase H resistance, we measured the loss from the ER-ERGIC-cis-Golgi cycle of ERGIC-53. A doma...

متن کامل

Targeting of Protein ERGIC-53 to the ER/ERGIC/cis-Golffl Recycling Pathway

ERGIC-53 is a lectin-type membrane protein that continuously recycles between the ER, ERGolgi intermediate compartment (ERGIC) and the cisGolgi. To identify the targeting signals that mediate this recycling, N-glycosylated and myc-tagged variants of ERGIC-53 were constructed. By monitoring endoglycosidase H resistance, we measured the loss from the ER-ERGIC-cis-Golgi cycle of ERGIC-53. A domain...

متن کامل

The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae

The yeast membrane protein Kex2p uses a tyrosine-containing motif within the cytoplasmic domain for localization to a late Golgi compartment. Because Golgi membrane proteins mislocalized to the plasma membrane in yeast can undergo endocytosis, we examined whether the Golgi localization sequence or other sequences in the Kex2p cytoplasmic domain mediate endocytosis. To assess endocytic function,...

متن کامل

Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast

The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yea...

متن کامل

Live imaging of bidirectional traffic from the ERGIC.

The endoplasmic reticulum-Golgi intermediate compartment (ERGIC) defined by the cycling lectin ERGIC-53 consists of tubulovesicular clusters, but it is unknown if these membranes are transport vehicles or stationary entities. Here, we show by live imaging that GFP-ERGIC-53 mainly localizes to long-lived stationary and some short-lived highly mobile elements. Unlike the anterograde marker VSV-G-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 9  شماره 

صفحات  -

تاریخ انتشار 1994